Remove 2012 Remove Accountability Remove APIs
article thumbnail

Use AWS PrivateLink to set up private access to Amazon Bedrock

AWS Machine Learning

It allows developers to build and scale generative AI applications using FMs through an API, without managing infrastructure. Customers are building innovative generative AI applications using Amazon Bedrock APIs using their own proprietary data.

APIs 137
article thumbnail

Govern generative AI in the enterprise with Amazon SageMaker Canvas

AWS Machine Learning

To use a specific LLM from Amazon Bedrock, SageMaker Canvas uses the model ID of the chosen LLM as part of the API calls. Limit access to all Amazon Bedrock models To restrict access to all Amazon Bedrock models, you can modify the SageMaker role to explicitly deny these APIs. This way, users can only invoke the allowed models.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication

AWS Machine Learning

In this post, we will continue to build on top of the previous solution to demonstrate how to build a private API Gateway via Amazon API Gateway as a proxy interface to generate and access Amazon SageMaker presigned URLs. The user invokes createStudioPresignedUrl API on API Gateway along with a token in the header.

APIs 88
article thumbnail

Configure cross-account access of Amazon Redshift clusters in Amazon SageMaker Studio using VPC peering

AWS Machine Learning

As described in the AWS Well-Architected Framework , separating workloads across accounts enables your organization to set common guardrails while isolating environments. Organizations with a multi-account architecture typically have Amazon Redshift and SageMaker Studio in two separate AWS accounts.

article thumbnail

Build a cross-account MLOps workflow using the Amazon SageMaker model registry

AWS Machine Learning

When designing production CI/CD pipelines, AWS recommends leveraging multiple accounts to isolate resources, contain security threats and simplify billing-and data science pipelines are no different. Some things to note in the preceding architecture: Accounts follow a principle of least privilege to follow security best practices.

article thumbnail

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

AWS Machine Learning

By using the Livy REST APIs , SageMaker Studio users can also extend their interactive analytics workflows beyond just notebook-based scenarios, enabling a more comprehensive and streamlined data science experience within the Amazon SageMaker ecosystem. elasticmapreduce", "arn:aws:s3:::*.elasticmapreduce/*" elasticmapreduce", "arn:aws:s3:::*.elasticmapreduce/*"

Big data 108
article thumbnail

Securing MLflow in AWS: Fine-grained access control with AWS native services

AWS Machine Learning

In this post, we address these limitations by implementing the access control outside of the MLflow server and offloading authentication and authorization tasks to Amazon API Gateway , where we implement fine-grained access control mechanisms at the resource level using Identity and Access Management (IAM).

APIs 77