Remove 2012 Remove Accountability Remove Scripts
article thumbnail

Build a cross-account MLOps workflow using the Amazon SageMaker model registry

AWS Machine Learning

When designing production CI/CD pipelines, AWS recommends leveraging multiple accounts to isolate resources, contain security threats and simplify billing-and data science pipelines are no different. Some things to note in the preceding architecture: Accounts follow a principle of least privilege to follow security best practices.

article thumbnail

Promote pipelines in a multi-environment setup using Amazon SageMaker Model Registry, HashiCorp Terraform, GitHub, and Jenkins CI/CD

AWS Machine Learning

Central model registry – Amazon SageMaker Model Registry is set up in a separate AWS account to track model versions generated across the dev and prod environments. Approve the model in SageMaker Model Registry in the central model registry account. Create a pull request to merge the code into the main branch of the GitHub repository.

Scripts 124
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

The Case For the Anti-Script: A Multifactor Analysis of Script Adherence

Balto

“The anti-script doesn’t mean that you should wing it on every call… what anti-script means is, think about a physical paper script and an agent who is reading it off word for word… you’re taking the most powerful part of the human out of the human.” Share on Twitter. Share on Facebook.

Scripts 52
article thumbnail

Machine learning with decentralized training data using federated learning on Amazon SageMaker

AWS Machine Learning

However, sometimes due to security and privacy regulations within or across organizations, the data is decentralized across multiple accounts or in different Regions and it can’t be centralized into one account or across Regions. Each account or Region has its own training instances.

Scripts 84
article thumbnail

Bring legacy machine learning code into Amazon SageMaker using AWS Step Functions

AWS Machine Learning

SageMaker runs the legacy script inside a processing container. SageMaker takes your script, copies your data from Amazon Simple Storage Service (Amazon S3), and then pulls a processing container. The SageMaker Processing job sets up your processing image using a Docker container entrypoint script.

Scripts 137
article thumbnail

Schedule your notebooks from any JupyterLab environment using the Amazon SageMaker JupyterLab extension

AWS Machine Learning

Migrating from interactive development on notebooks to batch jobs required you to copy code snippets from the notebook into a script, package the script with all its dependencies into a container, and schedule the container to run. In the following section, we show an example of using initialization scripts to install packages.

Scripts 90
article thumbnail

Securing MLflow in AWS: Fine-grained access control with AWS native services

AWS Machine Learning

How to use MLflow as a centralized repository in a multi-account setup. Prerequisites Before deploying the solution, make sure you have access to an AWS account with admin permissions. You can use this script add_users_and_groups.py How to extend Studio to enhance the user experience by rendering MLflow within Studio.

APIs 83