Remove Accountability Remove APIs Remove Best practices
article thumbnail

Amazon Bedrock launches Session Management APIs for generative AI applications (Preview)

AWS Machine Learning

Amazon Bedrock announces the preview launch of Session Management APIs, a new capability that enables developers to simplify state and context management for generative AI applications built with popular open source frameworks such as LangGraph and LlamaIndex. Building generative AI applications requires more than model API calls.

APIs 117
article thumbnail

How AWS Sales uses generative AI to streamline account planning

AWS Machine Learning

These documents are internally called account plans (APs). In 2024, this activity took an account manager (AM) up to 40 hours per customer. In this post, we showcase how the AWS Sales product team built the generative AI account plans draft assistant. Its a game-changer for serving my full portfolio of accounts.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Security best practices to consider while fine-tuning models in Amazon Bedrock

AWS Machine Learning

In this post, we delve into the essential security best practices that organizations should consider when fine-tuning generative AI models. The workflow steps are as follows: The user submits an Amazon Bedrock fine-tuning job within their AWS account, using IAM for resource access. Choose Create policy.

article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. API Gateway is serverless and hence automatically scales with traffic. API Gateway also provides a WebSocket API. Incoming requests to the gateway go through this point.

article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

APIs 111
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts. Mitigation strategies : Implementing measures to minimize or eliminate risks.

article thumbnail

Empower your generative AI application with a comprehensive custom observability solution

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon through a single API, along with a broad set of capabilities you need to build generative AI applications with security, privacy, and responsible AI.