Remove Accountability Remove APIs Remove Construction
article thumbnail

Enhance customer support with Amazon Bedrock Agents by integrating enterprise data APIs

AWS Machine Learning

In this post, we guide you through integrating Amazon Bedrock Agents with enterprise data APIs to create more personalized and effective customer support experiences. An automotive retailer might use inventory management APIs to track stock levels and catalog APIs for vehicle compatibility and specifications.

APIs 134
article thumbnail

GraphStorm 0.3: Scalable, multi-task learning on graphs with user-friendly APIs

AWS Machine Learning

With GraphStorm, you can build solutions that directly take into account the structure of relationships or interactions between billions of entities, which are inherently embedded in most real-world data, including fraud detection scenarios, recommendations, community detection, and search/retrieval problems. Specifically, GraphStorm 0.3

APIs 126
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 3: Multi-account private API access to Studio

AWS Machine Learning

One important aspect of this foundation is to organize their AWS environment following a multi-account strategy. In this post, we show how you can extend that architecture to multiple accounts to support multiple LOBs. In this post, we show how you can extend that architecture to multiple accounts to support multiple LOBs.

APIs 92
article thumbnail

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

AWS Machine Learning

Amazon Bedrock agents use LLMs to break down tasks, interact dynamically with users, run actions through API calls, and augment knowledge using Amazon Bedrock Knowledge Bases. In this post, we demonstrate how to use Amazon Bedrock Agents with a web search API to integrate dynamic web content in your generative AI application.

APIs 108
article thumbnail

Amazon SageMaker Feature Store now supports cross-account sharing, discovery, and access

AWS Machine Learning

SageMaker Feature Store now makes it effortless to share, discover, and access feature groups across AWS accounts. With this launch, account owners can grant access to select feature groups by other accounts using AWS Resource Access Manager (AWS RAM).

article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. The following figure illustrates the high-level design of the solution.

APIs 131
article thumbnail

Supercharge your AI team with Amazon SageMaker Studio: A comprehensive view of Deutsche Bahn’s AI platform transformation

AWS Machine Learning

Solution overview The architecture at Deutsche Bahn consists of a central platform account managed by a platform team responsible for managing infrastructure and operations for SageMaker Studio. The AI team does not have AWS Management Console access to the AI platform team’s account.

APIs 133