Remove Accountability Remove APIs Remove Feedback
article thumbnail

Amazon Bedrock launches Session Management APIs for generative AI applications (Preview)

AWS Machine Learning

Amazon Bedrock announces the preview launch of Session Management APIs, a new capability that enables developers to simplify state and context management for generative AI applications built with popular open source frameworks such as LangGraph and LlamaIndex. Building generative AI applications requires more than model API calls.

APIs 111
article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. API Gateway is serverless and hence automatically scales with traffic. API Gateway also provides a WebSocket API. Incoming requests to the gateway go through this point.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Build generative AI applications quickly with Amazon Bedrock IDE in Amazon SageMaker Unified Studio

AWS Machine Learning

Prerequisites Before creating your application in Amazon Bedrock IDE, you’ll need to set up a few resources in your AWS account. This includes setting up Amazon API Gateway , AWS Lambda functions, and Amazon Athena to enable querying the structured sales data. Navigate to the AWS Secrets Manager console and find the secret -api-keys.

APIs 104
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts. Mitigation strategies : Implementing measures to minimize or eliminate risks.

article thumbnail

Empower your generative AI application with a comprehensive custom observability solution

AWS Machine Learning

Observability empowers you to proactively monitor and analyze your generative AI applications, and evaluation helps you collect feedback, refine models, and enhance output quality. Security – The solution uses AWS services and adheres to AWS Cloud Security best practices so your data remains within your AWS account.

article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

APIs 109
article thumbnail

Enhance deployment guardrails with inference component rolling updates for Amazon SageMaker AI inference

AWS Machine Learning

For more information about the SageMaker AI API, refer to the SageMaker AI API Reference. 8B-Instruct to DeepSeek-R1-Distill-Llama-8B, but the new model version has different API expectations. In this use case, you have configured a CloudWatch alarm to monitor for 4xx errors, which would indicate API compatibility issues.

APIs 95