Remove Accountability Remove APIs Remove Healthcare
article thumbnail

How healthcare payers and plans can empower members with generative AI

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon through a unified API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

article thumbnail

Elevate healthcare interaction and documentation with Amazon Bedrock and Amazon Transcribe using Live Meeting Assistant

AWS Machine Learning

The Live Meeting Assistant (LMA) for healthcare solution is built using the power of generative AI and Amazon Transcribe , enabling real-time assistance and automated generation of clinical notes during virtual patient encounters. What are the differences between AWS HealthScribe and the LMA for healthcare?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Philips accelerates development of AI-enabled healthcare solutions with an MLOps platform built on Amazon SageMaker

AWS Machine Learning

Since 2014, the company has been offering customers its Philips HealthSuite Platform, which orchestrates dozens of AWS services that healthcare and life sciences companies use to improve patient care. Regulations in the healthcare industry call for especially rigorous data governance.

article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. API Gateway is serverless and hence automatically scales with traffic. API Gateway also provides a WebSocket API. Incoming requests to the gateway go through this point.

article thumbnail

Exploring summarization options for Healthcare with Amazon SageMaker

AWS Machine Learning

In today’s rapidly evolving healthcare landscape, doctors are faced with vast amounts of clinical data from various sources, such as caregiver notes, electronic health records, and imaging reports. In a healthcare setting, this would mean giving the model some data including phrases and terminology pertaining specifically to patient care.

article thumbnail

Build an internal SaaS service with cost and usage tracking for foundation models on Amazon Bedrock

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon via a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

SaaS 141
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts. Mitigation strategies : Implementing measures to minimize or eliminate risks.