Remove Accountability Remove APIs Remove Metrics
article thumbnail

Amazon Bedrock launches Session Management APIs for generative AI applications (Preview)

AWS Machine Learning

Amazon Bedrock announces the preview launch of Session Management APIs, a new capability that enables developers to simplify state and context management for generative AI applications built with popular open source frameworks such as LangGraph and LlamaIndex. Building generative AI applications requires more than model API calls.

APIs 119
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts. Mitigation strategies : Implementing measures to minimize or eliminate risks.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. API Gateway is serverless and hence automatically scales with traffic. API Gateway also provides a WebSocket API. Incoming requests to the gateway go through this point.

article thumbnail

Build generative AI applications quickly with Amazon Bedrock IDE in Amazon SageMaker Unified Studio

AWS Machine Learning

They have structured data such as sales transactions and revenue metrics stored in databases, alongside unstructured data such as customer reviews and marketing reports collected from various channels. Prerequisites Before creating your application in Amazon Bedrock IDE, you’ll need to set up a few resources in your AWS account.

APIs 106
article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

APIs 110
article thumbnail

Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

AWS Machine Learning

Evaluation algorithm Computes evaluation metrics to model outputs. Different algorithms have different metrics to be specified. It functions as a standalone HTTP server that provides various REST API endpoints for monitoring, recording, and visualizing experiment runs. This allows you to keep track of your ML experiments.

article thumbnail

Benchmarking Amazon Nova and GPT-4o models with FloTorch

AWS Machine Learning

How do Amazon Nova Micro and Amazon Nova Lite perform against GPT-4o mini in these same metrics? Amazon Bedrock APIs make it straightforward to use Amazon Titan Text Embeddings V2 for embedding data. Vector database FloTorch selected Amazon OpenSearch Service as a vector database for its high-performance metrics.

Benchmark 111