Remove Accountability Remove APIs Remove Presentation
article thumbnail

Enhance customer support with Amazon Bedrock Agents by integrating enterprise data APIs

AWS Machine Learning

In this post, we guide you through integrating Amazon Bedrock Agents with enterprise data APIs to create more personalized and effective customer support experiences. An automotive retailer might use inventory management APIs to track stock levels and catalog APIs for vehicle compatibility and specifications.

APIs 130
article thumbnail

Amazon Bedrock launches Session Management APIs for generative AI applications (Preview)

AWS Machine Learning

Amazon Bedrock announces the preview launch of Session Management APIs, a new capability that enables developers to simplify state and context management for generative AI applications built with popular open source frameworks such as LangGraph and LlamaIndex. Building generative AI applications requires more than model API calls.

APIs 121
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. The following figure illustrates the high-level design of the solution.

APIs 124
article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. API Gateway is serverless and hence automatically scales with traffic. API Gateway also provides a WebSocket API. As a result, building such a solution is often a significant undertaking for IT teams.

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts. Mitigation strategies : Implementing measures to minimize or eliminate risks.

article thumbnail

Transcribe, translate, and summarize live streams in your browser with AWS AI and generative AI services

AWS Machine Learning

This innovative feature empowers viewers to catch up with what is being presented, making it simpler to grasp key points and highlights, even if they have missed portions of the live stream or find it challenging to follow complex discussions. To launch the solution in a different Region, change the aws_region parameter accordingly.

APIs 133
article thumbnail

Automate building guardrails for Amazon Bedrock using test-driven development

AWS Machine Learning

In this post, we present a solution that takes a TDD approach to guardrail development, allowing you to improve your guardrails over time. This diagram presents the main workflow (Steps 1–4) and the optional automated workflow (Steps 5–7). Solution overview In this solution, you use a TDD approach to improve your guardrails.

APIs 118