Remove Accountability Remove APIs Remove Scripts
article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 3: Multi-account private API access to Studio

AWS Machine Learning

One important aspect of this foundation is to organize their AWS environment following a multi-account strategy. In this post, we show how you can extend that architecture to multiple accounts to support multiple LOBs. In this post, we show how you can extend that architecture to multiple accounts to support multiple LOBs.

APIs 77
article thumbnail

Generate customized, compliant application IaC scripts for AWS Landing Zone using Amazon Bedrock

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon with a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

Scripts 123
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. The following figure illustrates the high-level design of the solution.

APIs 119
article thumbnail

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

AWS Machine Learning

Amazon Bedrock agents use LLMs to break down tasks, interact dynamically with users, run actions through API calls, and augment knowledge using Amazon Bedrock Knowledge Bases. In this post, we demonstrate how to use Amazon Bedrock Agents with a web search API to integrate dynamic web content in your generative AI application.

APIs 102
article thumbnail

Governing ML lifecycle at scale: Best practices to set up cost and usage visibility of ML workloads in multi-account environments

AWS Machine Learning

For a multi-account environment, you can track costs at an AWS account level to associate expenses. A combination of an AWS account and tags provides the best results. For multiple accounts, assign mandatory tags to each one, identifying its purpose and the owner responsible.

article thumbnail

Create an end-to-end serverless digital assistant for semantic search with Amazon Bedrock

AWS Machine Learning

Amazon Bedrock is a fully managed service that makes a wide range of foundation models (FMs) available though an API without having to manage any infrastructure. Amazon API Gateway and AWS Lambda to create an API with an authentication layer and integrate with Amazon Bedrock. An API created with Amazon API Gateway.

APIs 124
article thumbnail

Amazon SageMaker Feature Store now supports cross-account sharing, discovery, and access

AWS Machine Learning

SageMaker Feature Store now makes it effortless to share, discover, and access feature groups across AWS accounts. With this launch, account owners can grant access to select feature groups by other accounts using AWS Resource Access Manager (AWS RAM).