Remove Accountability Remove APIs Remove Training
article thumbnail

Generate training data and cost-effectively train categorical models with Amazon Bedrock

AWS Machine Learning

In this post, we explore how you can use Amazon Bedrock to generate high-quality categorical ground truth data, which is crucial for training machine learning (ML) models in a cost-sensitive environment. This results in an imbalanced class distribution for training and test datasets.

article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. API Gateway is serverless and hence automatically scales with traffic. API Gateway also provides a WebSocket API. Incoming requests to the gateway go through this point.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts. Mitigation strategies : Implementing measures to minimize or eliminate risks.

article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

APIs 108
article thumbnail

From innovation to impact: How AWS and NVIDIA enable real-world generative AI success

AWS Machine Learning

For their AI training and inference workloads, Adobe uses NVIDIA GPU-accelerated Amazon Elastic Compute Cloud (Amazon EC2) P5en (NVIDIA H200 GPUs), P5 (NVIDIA H100 GPUs), P4de (NVIDIA A100 GPUs), and G5 (NVIDIA A10G GPUs) instances. To train generative AI models at enterprise scale, ServiceNow uses NVIDIA DGX Cloud on AWS.

article thumbnail

GraphStorm 0.3: Scalable, multi-task learning on graphs with user-friendly APIs

AWS Machine Learning

GraphStorm is a low-code enterprise graph machine learning (GML) framework to build, train, and deploy graph ML solutions on complex enterprise-scale graphs in days instead of months. allows you to define multiple training targets on different nodes and edges within a single training loop. Specifically, GraphStorm 0.3

APIs 113
article thumbnail

Security best practices to consider while fine-tuning models in Amazon Bedrock

AWS Machine Learning

Fine-tuning pre-trained language models allows organizations to customize and optimize the models for their specific use cases, providing better performance and more accurate outputs tailored to their unique data and requirements. Model customization in Amazon Bedrock involves the following actions: Create training and validation datasets.