Remove Accountability Remove Big data Remove Construction
article thumbnail

Amazon SageMaker Feature Store now supports cross-account sharing, discovery, and access

AWS Machine Learning

SageMaker Feature Store now makes it effortless to share, discover, and access feature groups across AWS accounts. With this launch, account owners can grant access to select feature groups by other accounts using AWS Resource Access Manager (AWS RAM).

article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 3: Multi-account private API access to Studio

AWS Machine Learning

One important aspect of this foundation is to organize their AWS environment following a multi-account strategy. In this post, we show how you can extend that architecture to multiple accounts to support multiple LOBs. In this post, we show how you can extend that architecture to multiple accounts to support multiple LOBs.

APIs 70
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

More Than Just Number-Crunchers: How Accountants Provide Value-Added Services

Method:CRM

Those poor accountants. In fact, today’s accountants are far more than just number-crunchers — they’re leaders, strategists, technologists, advisors and business specialists. The accounting industry: (p)art of the deal. Accountants speak the language of business. For instance, look at large accounting organizations.

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts. Mitigation strategies : Implementing measures to minimize or eliminate risks.

article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

An AWS account and an AWS Identity and Access Management (IAM) principal with sufficient permissions to create and manage the resources needed for this application. If you don’t have an AWS account, refer to How do I create and activate a new Amazon Web Services account? The script deploys the AWS CDK project in your account.

APIs 108
article thumbnail

Personalize your generative AI applications with Amazon SageMaker Feature Store

AWS Machine Learning

Building on the concept of dynamically fetching up-to-date data to produce personalized content, the use of LLMs has garnered significant attention in recent research for recommender systems. In summary, intelligent agents could construct prompts using user- and item-related data and deliver customized natural language responses to users.

article thumbnail

Add conversational AI to any contact center with Amazon Lex and the Amazon Chime SDK

AWS Machine Learning

Reviewing the Account Balance chatbot. As an example, this demo deploys a bot to perform three automated tasks, or intents : Check Balance , Transfer Funds , and Open Account. For example, the Open Account intent includes four slots: First Name. Account Type. Complete the following steps: Log in to your AWS account.