Remove Accountability Remove Big data Remove Engineering
article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

AWS Machine Learning

Challenges in data management Traditionally, managing and governing data across multiple systems involved tedious manual processes, custom scripts, and disconnected tools. The diagram shows several accounts and personas as part of the overall infrastructure. The following diagram gives a high-level illustration of the use case.

article thumbnail

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

AWS Machine Learning

About the Authors Dheer Toprani is a System Development Engineer within the Amazon Worldwide Returns and ReCommerce Data Services team. Chaithanya Maisagoni is a Senior Software Development Engineer (AI/ML) in Amazons Worldwide Returns and ReCommerce organization.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Amazon SageMaker Feature Store now supports cross-account sharing, discovery, and access

AWS Machine Learning

SageMaker Feature Store now makes it effortless to share, discover, and access feature groups across AWS accounts. With this launch, account owners can grant access to select feature groups by other accounts using AWS Resource Access Manager (AWS RAM).

article thumbnail

Set up cross-account Amazon S3 access for Amazon SageMaker notebooks in VPC-only mode using Amazon S3 Access Points

AWS Machine Learning

To develop models for such use cases, data scientists need access to various datasets like credit decision engines, customer transactions, risk appetite, and stress testing. Amazon S3 Access Points simplify managing and securing data access at scale for applications using shared datasets on Amazon S3.

article thumbnail

Leveraging Big Data to Fine Tune Customer Experiences

Avaya

Whether you realize it or not, big data is at the heart of practically everything we do today. In today’s smart, digital world, big data has opened the floodgates to never-before-seen possibilities. To effectively apply your data, you must first determine what you wish to achieve with your data in the first place.

article thumbnail

Generate financial industry-specific insights using generative AI and in-context fine-tuning

AWS Machine Learning

In this blog post, we demonstrate prompt engineering techniques to generate accurate and relevant analysis of tabular data using industry-specific language. This is done by providing large language models (LLMs) in-context sample data with features and labels in the prompt. As we can see the data retrieval is more accurate.

article thumbnail

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

AWS Machine Learning

Harnessing the power of big data has become increasingly critical for businesses looking to gain a competitive edge. However, managing the complex infrastructure required for big data workloads has traditionally been a significant challenge, often requiring specialized expertise.

Big data 116