Remove Accountability Remove Engineering Remove Metrics
article thumbnail

20 Call Center Pros Share the Most Undervalued Call Center Metrics and How To Better Leverage Them

Callminer

From essentials like average handle time to broader metrics such as call center service levels , there are dozens of metrics that call center leaders and QA teams must stay on top of, and they all provide visibility into some aspect of performance. Kaye Chapman @kayejchapman. First contact resolution (FCR) measures might be…”.

article thumbnail

Build a reverse image search engine with Amazon Titan Multimodal Embeddings in Amazon Bedrock and AWS managed services

AWS Machine Learning

A reverse image search engine enables users to upload an image to find related information instead of using text-based queries. Solution overview The solution outlines how to build a reverse image search engine to retrieve similar images based on input image queries. Engine : Select nmslib. Distance metric : Select Euclidean.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Accelerating ML experimentation with enhanced security: AWS PrivateLink support for Amazon SageMaker with MLflow

AWS Machine Learning

However, keeping track of numerous experiments, their parameters, metrics, and results can be difficult, especially when working on complex projects simultaneously. SageMaker is a comprehensive, fully managed ML service designed to provide data scientists and ML engineers with the tools they need to handle the entire ML workflow.

Metrics 96
article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning

For automatic model evaluation jobs, you can either use built-in datasets across three predefined metrics (accuracy, robustness, toxicity) or bring your own datasets. Regular evaluations allow you to adjust and steer the AI’s behavior based on feedback and performance metrics.

APIs 110
article thumbnail

LLM-as-a-judge on Amazon Bedrock Model Evaluation

AWS Machine Learning

This approach allows organizations to assess their AI models effectiveness using pre-defined metrics, making sure that the technology aligns with their specific needs and objectives. Curated judge models : Amazon Bedrock provides pre-selected, high-quality evaluation models with optimized prompt engineering for accurate assessments.

Metrics 94
article thumbnail

Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

AWS Machine Learning

By documenting the specific model versions, fine-tuning parameters, and prompt engineering techniques employed, teams can better understand the factors contributing to their AI systems performance. Evaluation algorithm Computes evaluation metrics to model outputs. Different algorithms have different metrics to be specified.

article thumbnail

Empower your generative AI application with a comprehensive custom observability solution

AWS Machine Learning

Observability refers to the ability to understand the internal state and behavior of a system by analyzing its outputs, logs, and metrics. Security – The solution uses AWS services and adheres to AWS Cloud Security best practices so your data remains within your AWS account.