Remove Accountability Remove Engineering Remove Scripts
article thumbnail

Generate customized, compliant application IaC scripts for AWS Landing Zone using Amazon Bedrock

AWS Machine Learning

Amazon Bedrock empowers teams to generate Terraform and CloudFormation scripts that are custom fitted to organizational needs while seamlessly integrating compliance and security best practices. Traditionally, cloud engineers learning IaC would manually sift through documentation and best practices to write compliant IaC scripts.

Scripts 113
article thumbnail

Amazon SageMaker Feature Store now supports cross-account sharing, discovery, and access

AWS Machine Learning

SageMaker Feature Store now makes it effortless to share, discover, and access feature groups across AWS accounts. With this launch, account owners can grant access to select feature groups by other accounts using AWS Resource Access Manager (AWS RAM).

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Same Tactics, Different Scripts: What Contact Center Fraud Sounds Like in the Age of Coronavirus

pindrop

With verified account numbers and some basic information, a fraudster has all they need to execute fraud through the phone channel using convincing scripts involving the current crisis to socially engineer contact center agents and individuals. . The New Fraud Scripts. Travel-Related Inconveniences and Emergencies .

Scripts 79
article thumbnail

What Is Knowledge Engineering and Why Do I Need It for Chatbot Development?

Aspect

It also has to be engineered to fit different purposes and contexts. No, there are simple, static bots that can be developed with scripting tools. These bots allow for conversation branching and connection to structured data sources such as account balances. appeared first on Aspect Blogs.

article thumbnail

Build a cross-account MLOps workflow using the Amazon SageMaker model registry

AWS Machine Learning

When designing production CI/CD pipelines, AWS recommends leveraging multiple accounts to isolate resources, contain security threats and simplify billing-and data science pipelines are no different. Some things to note in the preceding architecture: Accounts follow a principle of least privilege to follow security best practices.

article thumbnail

Bring legacy machine learning code into Amazon SageMaker using AWS Step Functions

AWS Machine Learning

We demonstrate how two different personas, a data scientist and an MLOps engineer, can collaborate to lift and shift hundreds of legacy models. SageMaker runs the legacy script inside a processing container. We assume the involvement of two personas: a data scientist and an MLOps engineer.

Scripts 124
article thumbnail

Automate Amazon SageMaker Pipelines DAG creation

AWS Machine Learning

This enables data scientists to quickly build and iterate on ML models, and empowers ML engineers to run through continuous integration and continuous delivery (CI/CD) ML pipelines faster, decreasing time to production for models. You can then iterate on preprocessing, training, and evaluation scripts, as well as configuration choices.

Scripts 101