Remove Accountability Remove Government Remove Metrics
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts. Human oversight : Including human involvement in AI decision-making processes.

article thumbnail

Improve governance of models with Amazon SageMaker unified Model Cards and Model Registry

AWS Machine Learning

You can now register machine learning (ML) models in Amazon SageMaker Model Registry with Amazon SageMaker Model Cards , making it straightforward to manage governance information for specific model versions directly in SageMaker Model Registry in just a few clicks.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Governing the ML lifecycle at scale: Centralized observability with Amazon SageMaker and Amazon CloudWatch

AWS Machine Learning

This post is part of an ongoing series on governing the machine learning (ML) lifecycle at scale. To start from the beginning, refer to Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker.

article thumbnail

Data Governance in the Age of AI: A Competitive Edge for Business Leaders

COPC

But here’s the reality: none of that happens without reliable data governance. However, the surge in AI adoption means governance frameworks must adapt to keep pace. Data governance is necessary to maintain these models’ reliability and meet internal and regulatory guidelines. Meanwhile, active data enables agility.

article thumbnail

Unlock the power of data governance and no-code machine learning with Amazon SageMaker Canvas and Amazon DataZone

AWS Machine Learning

Amazon DataZone is a data management service that makes it quick and convenient to catalog, discover, share, and govern data stored in AWS, on-premises, and third-party sources. However, ML governance plays a key role to make sure the data used in these models is accurate, secure, and reliable.

article thumbnail

B2B Customer Experience Governance

ClearAction

B2B Customer Experience Governance Lynn Hunsaker B2B customer experience governance can generate stronger growth when it’s tied-in to the way that B2B ecosystems work. Governance of any endeavor is strongest when it’s integrated as your company’s way of life. Built-in B2B Customer Experience Governance 1.

article thumbnail

Improve governance of your machine learning models with Amazon SageMaker

AWS Machine Learning

Overview of model governance. Model governance is a framework that gives systematic visibility into model development, validation, and usage. Model governance is applicable across the end-to-end ML workflow, starting from identifying the ML use case to ongoing monitoring of a deployed model through alerts, reports, and dashboards.