Remove Accountability Remove Government Remove Scripts
article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

AWS Machine Learning

This post is part of an ongoing series about governing the machine learning (ML) lifecycle at scale. This post dives deep into how to set up data governance at scale using Amazon DataZone for the data mesh. However, as data volumes and complexity continue to grow, effective data governance becomes a critical challenge.

article thumbnail

Governing ML lifecycle at scale: Best practices to set up cost and usage visibility of ML workloads in multi-account environments

AWS Machine Learning

For a multi-account environment, you can track costs at an AWS account level to associate expenses. A combination of an AWS account and tags provides the best results. Tagging is an effective scaling mechanism for implementing cloud management and governance strategies.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts. Human oversight : Including human involvement in AI decision-making processes.

article thumbnail

Generate customized, compliant application IaC scripts for AWS Landing Zone using Amazon Bedrock

AWS Machine Learning

Amazon Bedrock empowers teams to generate Terraform and CloudFormation scripts that are custom fitted to organizational needs while seamlessly integrating compliance and security best practices. Traditionally, cloud engineers learning IaC would manually sift through documentation and best practices to write compliant IaC scripts.

Scripts 135
article thumbnail

6 Killer Applications for Artificial Intelligence in the Customer Engagement Contact Center

If Artificial Intelligence for businesses is a red-hot topic in C-suites, AI for customer engagement and contact center customer service is white hot. This white paper covers specific areas in this domain that offer potential for transformational ROI, and a fast, zero-risk way to innovate with AI.

article thumbnail

Amazon SageMaker Feature Store now supports cross-account sharing, discovery, and access

AWS Machine Learning

SageMaker Feature Store now makes it effortless to share, discover, and access feature groups across AWS accounts. With this launch, account owners can grant access to select feature groups by other accounts using AWS Resource Access Manager (AWS RAM).

article thumbnail

How Deltek uses Amazon Bedrock for question and answering on government solicitation documents

AWS Machine Learning

This post provides an overview of a custom solution developed by the AWS Generative AI Innovation Center (GenAIIC) for Deltek , a globally recognized standard for project-based businesses in both government contracting and professional services. Deltek serves over 30,000 clients with industry-specific software and information solutions.