Remove Analysis Remove APIs Remove Benchmark
article thumbnail

Benchmarking Amazon Nova and GPT-4o models with FloTorch

AWS Machine Learning

Using its enterprise software, FloTorch conducted an extensive comparison between Amazon Nova models and OpenAIs GPT-4o models with the Comprehensive Retrieval Augmented Generation (CRAG) benchmark dataset. FloTorch used these queries and their ground truth answers to create a subset benchmark dataset.

Benchmark 107
article thumbnail

Pixtral-12B-2409 is now available on Amazon Bedrock Marketplace

AWS Machine Learning

Overview of Pixtral 12B Pixtral 12B, Mistrals inaugural VLM, delivers robust performance across a range of benchmarks, surpassing other open models and rivaling larger counterparts, according to Mistrals evaluation. Performance metrics and benchmarks Pixtral 12B is trained to understand both natural images and documents, achieving 52.5%

Benchmark 101
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

LLM-as-a-judge on Amazon Bedrock Model Evaluation

AWS Machine Learning

Amazon Bedrock , a fully managed service offering high-performing foundation models from leading AI companies through a single API, has recently introduced two significant evaluation capabilities: LLM-as-a-judge under Amazon Bedrock Model Evaluation and RAG evaluation for Amazon Bedrock Knowledge Bases. 0]}-{evaluator_model.split('.')[0]}-{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}"

Metrics 96
article thumbnail

From RAG to fabric: Lessons learned from building real-world RAGs at GenAIIC – Part 2

AWS Machine Learning

Oil and gas data analysis – Before beginning operations at a well a well, an oil and gas company will collect and process a diverse range of data to identify potential reservoirs, assess risks, and optimize drilling strategies. Consider a financial data analysis system. We give more details on that aspect later in this post.

APIs 117
article thumbnail

Benchmark and optimize endpoint deployment in Amazon SageMaker JumpStart 

AWS Machine Learning

This post explores these relationships via a comprehensive benchmarking of LLMs available in Amazon SageMaker JumpStart, including Llama 2, Falcon, and Mistral variants. We provide theoretical principles on how accelerator specifications impact LLM benchmarking. Additionally, models are fully sharded on the supported instance.

Benchmark 125
article thumbnail

Optimizing AI responsiveness: A practical guide to Amazon Bedrock latency-optimized inference

AWS Machine Learning

A slight delay in generating a complex analysis might be acceptable, and even a small lag in a conversational exchange can feel disruptive. When conducting your own benchmarks, make sure your test dataset represents your actual production workload characteristics, including typical input lengths and expected output patterns.

article thumbnail

Generate training data and cost-effectively train categorical models with Amazon Bedrock

AWS Machine Learning

These include metrics such as ROUGE or cosine similarity for text similarity, and specific benchmarks for assessing toxicity (Detoxify), prompt stereotyping (cross-entropy loss), or factual knowledge (HELM, LAMA). Refer to Getting started with the API to set up your environment to make Amazon Bedrock requests through the AWS API.

Education 109