Remove Analytics Remove APIs Remove Document
article thumbnail

Integrate generative AI capabilities into Microsoft Office using Amazon Bedrock

AWS Machine Learning

Note that these APIs use objects as namespaces, alleviating the need for explicit imports. API Gateway supports multiple mechanisms for controlling and managing access to an API. AWS Lambda handles the REST API integration, processing the requests and invoking the appropriate AWS services.

APIs 98
article thumbnail

Build a video insights and summarization engine using generative AI with Amazon Bedrock

AWS Machine Learning

These insights are stored in a central repository, unlocking the ability for analytics teams to have a single view of interactions and use the data to formulate better sales and support strategies. With Lambda integration, we can create a web API with an endpoint to the Lambda function.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. API Gateway is serverless and hence automatically scales with traffic. API Gateway also provides a WebSocket API. Incoming requests to the gateway go through this point.

article thumbnail

Process mortgage documents with intelligent document processing using Amazon Textract and Amazon Comprehend

AWS Machine Learning

Organizations in the lending and mortgage industry process thousands of documents on a daily basis. From a new mortgage application to mortgage refinance, these business processes involve hundreds of documents per application. At the start of the process, documents are uploaded to an Amazon Simple Storage Service (Amazon S3) bucket.

APIs 107
article thumbnail

Intelligent document processing with AWS AI and Analytics services in the insurance industry: Part 2

AWS Machine Learning

In Part 1 of this series, we discussed intelligent document processing (IDP), and how IDP can accelerate claims processing use cases in the insurance industry. We discussed how we can use AWS AI services to accurately categorize claims documents along with supporting documents. Part 1: Classification and extraction of documents.

article thumbnail

Principal Financial Group uses QnABot on AWS and Amazon Q Business to enhance workforce productivity with generative AI

AWS Machine Learning

Principal wanted to use existing internal FAQs, documentation, and unstructured data and build an intelligent chatbot that could provide quick access to the right information for different roles. As Principal grew, its internal support knowledge base considerably expanded.

Chatbots 113
article thumbnail

Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

AWS Machine Learning

By documenting the specific model versions, fine-tuning parameters, and prompt engineering techniques employed, teams can better understand the factors contributing to their AI systems performance. SageMaker is a data, analytics, and AI/ML platform, which we will use in conjunction with FMEval to streamline the evaluation process.