Remove Analytics Remove APIs Remove Examples
article thumbnail

Integrate generative AI capabilities into Microsoft Office using Amazon Bedrock

AWS Machine Learning

One can quickly host such application on the AWS Cloud without managing the underlying infrastructure, for example, with Amazon Simple Storage Service (S3) and Amazon CloudFront. Note that these APIs use objects as namespaces, alleviating the need for explicit imports. Here, we use Anthropics Claude 3.5 Sonnet).

APIs 98
article thumbnail

Build a video insights and summarization engine using generative AI with Amazon Bedrock

AWS Machine Learning

These insights are stored in a central repository, unlocking the ability for analytics teams to have a single view of interactions and use the data to formulate better sales and support strategies. With Lambda integration, we can create a web API with an endpoint to the Lambda function.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. It contains services used to onboard, manage, and operate the environment, for example, to onboard and off-board tenants, users, and models, assign quotas to different tenants, and authentication and authorization microservices.

article thumbnail

Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

AWS Machine Learning

SageMaker is a data, analytics, and AI/ML platform, which we will use in conjunction with FMEval to streamline the evaluation process. It functions as a standalone HTTP server that provides various REST API endpoints for monitoring, recording, and visualizing experiment runs. We specifically focus on SageMaker with MLflow.

article thumbnail

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

AWS Machine Learning

Whether youre new to AI development or an experienced practitioner, this post provides step-by-step guidance and code examples to help you build more reliable AI applications. Lets walkthrough an example of how this solution would handle a users question. For example, if the question was What hotels are near re:Invent?

article thumbnail

From innovation to impact: How AWS and NVIDIA enable real-world generative AI success

AWS Machine Learning

The organizations that figure this out first will have a significant competitive advantageand were already seeing compelling examples of whats possible. Rahul has over twenty years of experience in technology and has co-founded two companies, one focused on analytics and the other on IP-geolocation.

article thumbnail

Empower your generative AI application with a comprehensive custom observability solution

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon through a single API, along with a broad set of capabilities you need to build generative AI applications with security, privacy, and responsible AI.