Remove Analytics Remove APIs Remove Feedback
article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. API Gateway is serverless and hence automatically scales with traffic. API Gateway also provides a WebSocket API. Incoming requests to the gateway go through this point.

article thumbnail

Empower your generative AI application with a comprehensive custom observability solution

AWS Machine Learning

Observability empowers you to proactively monitor and analyze your generative AI applications, and evaluation helps you collect feedback, refine models, and enhance output quality. In the context of Amazon Bedrock , observability and evaluation become even more crucial.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

AWS Machine Learning

Rigorous testing allows us to understand an LLMs capabilities, limitations, and potential biases, and provide actionable feedback to identify and mitigate risk. SageMaker is a data, analytics, and AI/ML platform, which we will use in conjunction with FMEval to streamline the evaluation process.

article thumbnail

Principal Financial Group uses QnABot on AWS and Amazon Q Business to enhance workforce productivity with generative AI

AWS Machine Learning

QnABot is a multilanguage, multichannel conversational interface (chatbot) that responds to customers’ questions, answers, and feedback. Usability and continual improvement were top priorities, and Principal enhanced the standard user feedback from QnABot to gain input from end-users on answer accuracy, outdated content, and relevance.

Chatbots 113
article thumbnail

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

AWS Machine Learning

Solution overview Our solution implements a verified semantic cache using the Amazon Bedrock Knowledge Bases Retrieve API to reduce hallucinations in LLM responses while simultaneously improving latency and reducing costs. The function checks the semantic cache (Amazon Bedrock Knowledge Bases) using the Retrieve API.

article thumbnail

How to Successfully Implement Customer Journey Analytics – Part 1

Pointillist

Companies are increasingly benefiting from customer journey analytics across marketing and customer experience, as the results are real, immediate and have a lasting effect. Learning how to choose the best customer journey analytics platform is just the start. Steps to Implement Customer Journey Analytics. By Swati Sahai.

article thumbnail

Boost agent productivity with Salesforce integration for Live Call Analytics

AWS Machine Learning

The Live Call Analytics with Agent Assist (LCA) open-source solution addresses these challenges by providing features such as AI-powered agent assistance, call transcription, call summarization, and much more. Under Available OAuth Scopes , choose Manage user data via APIs (api). Choose Save. Verify your identity if prompted.