Remove Analytics Remove APIs Remove Scripts
article thumbnail

Unlocking insights and enhancing customer service: Intact’s transformative AI journey with AWS

AWS Machine Learning

In this post, we demonstrate how the CQ solution used Amazon Transcribe and other AWS services to improve critical KPIs with AI-powered contact center call auditing and analytics. The goal was to refine customer service scripts, provide coaching opportunities for agents, and improve call handling processes.

article thumbnail

Bring legacy machine learning code into Amazon SageMaker using AWS Step Functions

AWS Machine Learning

The best practice for migration is to refactor these legacy codes using the Amazon SageMaker API or the SageMaker Python SDK. SageMaker runs the legacy script inside a processing container. Step Functions is a serverless workflow service that can control SageMaker APIs directly through the use of the Amazon States Language.

Scripts 139
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

How to Successfully Implement Customer Journey Analytics – Part 1

Pointillist

Companies are increasingly benefiting from customer journey analytics across marketing and customer experience, as the results are real, immediate and have a lasting effect. Learning how to choose the best customer journey analytics platform is just the start. Steps to Implement Customer Journey Analytics. By Swati Sahai.

article thumbnail

Few-shot prompt engineering and fine-tuning for LLMs in Amazon Bedrock

AWS Machine Learning

Traditionally, earnings call scripts have followed similar templates, making it a repeatable task to generate them from scratch each time. On the other hand, generative artificial intelligence (AI) models can learn these templates and produce coherent scripts when fed with quarterly financial data.

article thumbnail

Generate training data and cost-effectively train categorical models with Amazon Bedrock

AWS Machine Learning

Refer to Getting started with the API to set up your environment to make Amazon Bedrock requests through the AWS API. Test the code using the native inference API for Anthropics Claude The following code uses the native inference API to send a text message to Anthropics Claude. client = boto3.client("bedrock-runtime",

article thumbnail

Supercharge your AI team with Amazon SageMaker Studio: A comprehensive view of Deutsche Bahn’s AI platform transformation

AWS Machine Learning

At Deutsche Bahn, a dedicated AI platform team manages and operates the SageMaker Studio platform, and multiple data analytics teams within the organization use the platform to develop, train, and run various analytics and ML activities.

APIs 121
article thumbnail

Derive generative AI powered insights from Alation Cloud Services using Amazon Q Business Custom Connector

AWS Machine Learning

Headquartered in Redwood City, California, Alation is an AWS Specialization Partner and AWS Marketplace Seller with Data and Analytics Competency. Organizations trust Alations platform for self-service analytics, cloud transformation, data governance, and AI-ready data, fostering innovation at scale. secrets_manager_client = boto3.client('secretsmanager')