Remove Analytics Remove Big data Remove Government
article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

AWS Machine Learning

This post is part of an ongoing series about governing the machine learning (ML) lifecycle at scale. This post dives deep into how to set up data governance at scale using Amazon DataZone for the data mesh. However, as data volumes and complexity continue to grow, effective data governance becomes a critical challenge.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning

However, implementing security, data privacy, and governance controls are still key challenges faced by customers when implementing ML workloads at scale. Customers of every size and industry are innovating on AWS by infusing machine learning (ML) into their products and services.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Unlock the power of data governance and no-code machine learning with Amazon SageMaker Canvas and Amazon DataZone

AWS Machine Learning

Amazon DataZone is a data management service that makes it quick and convenient to catalog, discover, share, and govern data stored in AWS, on-premises, and third-party sources. However, ML governance plays a key role to make sure the data used in these models is accurate, secure, and reliable.

article thumbnail

Improve governance of models with Amazon SageMaker unified Model Cards and Model Registry

AWS Machine Learning

You can now register machine learning (ML) models in Amazon SageMaker Model Registry with Amazon SageMaker Model Cards , making it straightforward to manage governance information for specific model versions directly in SageMaker Model Registry in just a few clicks.

article thumbnail

Prescriptive analytics: The way forward for Big Data

Hero Digital

This, in a nutshell, is prescriptive analytics. For a long time, the field of data and analytics was focused on describing what happened — how many customers bought the product, what they looked like, how many came back, etc. With the advent of advanced ML algorithms, analytics has now entered the prescriptive phase.

article thumbnail

Achieve operational excellence with well-architected generative AI solutions using Amazon Bedrock

AWS Machine Learning

However, scaling up generative AI and making adoption easier for different lines of businesses (LOBs) comes with challenges around making sure data privacy and security, legal, compliance, and operational complexities are governed on an organizational level. In this post, we discuss how to address these challenges holistically.

article thumbnail

Talking Omnichannel But Organised Multi Channel?

Peter Lavers

You also have access to fantastic tools such as IBM Watson’s cognitive technology, which are helping unscramble big data and complex customer journeys in a way that’ll never be achieved with brown paper and post-it notes! The 21 st century organizational design needs three P&L lenses – product, channel, and customer.