Remove APIs Remove Big data Remove Construction
article thumbnail

Building the future of construction analytics: CONXAI’s AI inference on Amazon EKS

AWS Machine Learning

CONXAI Technology GmbH is pioneering the development of an advanced AI platform for the Architecture, Engineering, and Construction (AEC) industry. Our platform uses advanced AI to empower construction domain experts to create complex use cases efficiently. These camera feeds can be analyzed using AI to extract valuable insights.

article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 3: Multi-account private API access to Studio

AWS Machine Learning

In the post Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication , we demonstrated how to build a private API to generate Amazon SageMaker Studio presigned URLs that are only accessible by an authenticated end-user within the corporate network from a single account.

APIs 97
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. The following figure illustrates the high-level design of the solution.

APIs 121
article thumbnail

Achieve operational excellence with well-architected generative AI solutions using Amazon Bedrock

AWS Machine Learning

It’s a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like Anthropic, Cohere, Meta, Mistral AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

article thumbnail

Design secure generative AI application workflows with Amazon Verified Permissions and Amazon Bedrock Agents

AWS Machine Learning

Agents automatically call the necessary APIs to interact with the company systems and processes to fulfill the request. The App calls the Claims API Gateway API to run the claims proxy passing user requests and tokens. Claims API Gateway runs the Custom Authorizer to validate the access token.

APIs 95
article thumbnail

Securing MLflow in AWS: Fine-grained access control with AWS native services

AWS Machine Learning

In this post, we address these limitations by implementing the access control outside of the MLflow server and offloading authentication and authorization tasks to Amazon API Gateway , where we implement fine-grained access control mechanisms at the resource level using Identity and Access Management (IAM). Adds an IAM authorizer.

APIs 97
article thumbnail

Onboard users to Amazon SageMaker Studio with Active Directory group-specific IAM roles

AWS Machine Learning

For provisioning Studio in your AWS account and Region, you first need to create an Amazon SageMaker domain—a construct that encapsulates your ML environment. When the AD user is assigned to an AD group, an IAM Identity Center API ( CreateGroupMembership ) is invoked, and SSO group membership is created.

APIs 99