Remove APIs Remove Big data Remove Construction
article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. The following figure illustrates the high-level design of the solution.

APIs 123
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

Customers can use the SageMaker Studio UI or APIs to specify the SageMaker Model Registry model to be shared and grant access to specific AWS accounts or to everyone in the organization. We will start by using the SageMaker Studio UI and then by using APIs.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Transforming credit decisions using generative AI with Rich Data Co and AWS

AWS Machine Learning

They provide access to external data and APIs or enable specific actions and computation. To efficiently use the models context window, we construct a tool selector that retrieves only the relevant tools based on the information in the agent state. Tools Tools extend agent capabilities beyond the FM.

article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 3: Multi-account private API access to Studio

AWS Machine Learning

In the post Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication , we demonstrated how to build a private API to generate Amazon SageMaker Studio presigned URLs that are only accessible by an authenticated end-user within the corporate network from a single account.

APIs 93
article thumbnail

Achieve operational excellence with well-architected generative AI solutions using Amazon Bedrock

AWS Machine Learning

It’s a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like Anthropic, Cohere, Meta, Mistral AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

article thumbnail

Cepsa Química improves the efficiency and accuracy of product stewardship using Amazon Bedrock

AWS Machine Learning

We partnered with Keepler , a cloud-centered data services consulting company specialized in the design, construction, deployment, and operation of advanced public cloud analytics custom-made solutions for large organizations, in the creation of the first generative AI solution for one of our corporate teams.

APIs 122
article thumbnail

Design secure generative AI application workflows with Amazon Verified Permissions and Amazon Bedrock Agents

AWS Machine Learning

Agents automatically call the necessary APIs to interact with the company systems and processes to fulfill the request. The App calls the Claims API Gateway API to run the claims proxy passing user requests and tokens. Claims API Gateway runs the Custom Authorizer to validate the access token.

APIs 93