Remove APIs Remove Big data Remove Consulting
article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication

AWS Machine Learning

In this post, we will continue to build on top of the previous solution to demonstrate how to build a private API Gateway via Amazon API Gateway as a proxy interface to generate and access Amazon SageMaker presigned URLs. The user invokes createStudioPresignedUrl API on API Gateway along with a token in the header.

APIs 98
article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 3: Multi-account private API access to Studio

AWS Machine Learning

In the post Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication , we demonstrated how to build a private API to generate Amazon SageMaker Studio presigned URLs that are only accessible by an authenticated end-user within the corporate network from a single account.

APIs 97
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Intelligent healthcare forms analysis with Amazon Bedrock

AWS Machine Learning

Amazon Bedrock is a fully managed service that makes foundation models (FMs) from leading AI startups and Amazon available through an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case. Lastly, the Lambda function stores the question list in Amazon S3.

article thumbnail

Use RAG for drug discovery with Knowledge Bases for Amazon Bedrock

AWS Machine Learning

The Retrieve and RetrieveAndGenerate APIs allow your applications to directly query the index using a unified and standard syntax without having to learn separate APIs for each different vector database, reducing the need to write custom index queries against your vector store.

APIs 135
article thumbnail

Achieve operational excellence with well-architected generative AI solutions using Amazon Bedrock

AWS Machine Learning

It’s a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like Anthropic, Cohere, Meta, Mistral AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

article thumbnail

WFO Trends in 2020

DMG Consulting

The greatest areas of investment in service organizations and contact centers are in AI, robotic process automation (RPA), big data and digital-oriented applications, all of which are delivered via the cloud. The idea is to make systems interoperable through easy-to-use application programming interfaces (APIs).

article thumbnail

Use Amazon SageMaker pipeline sharing to view or manage pipelines across AWS accounts

AWS Machine Learning

You can now use cross-account support for Amazon SageMaker Pipelines to share pipeline entities across AWS accounts and access shared pipelines directly through Amazon SageMaker API calls. The data scientist is now able to describe and monitor the test pipeline run status using SageMaker API calls from the dev account.