Remove APIs Remove Big data Remove Engineering
article thumbnail

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

AWS Machine Learning

Solution overview Our solution implements a verified semantic cache using the Amazon Bedrock Knowledge Bases Retrieve API to reduce hallucinations in LLM responses while simultaneously improving latency and reducing costs. The function checks the semantic cache (Amazon Bedrock Knowledge Bases) using the Retrieve API.

article thumbnail

How Formula 1® uses generative AI to accelerate race-day issue resolution

AWS Machine Learning

During these live events, F1 IT engineers must triage critical issues across its services, such as network degradation to one of its APIs. This impacts downstream services that consume data from the API, including products such as F1 TV, which offer live and on-demand coverage of every race as well as real-time telemetry.

APIs 70
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

Customers can use the SageMaker Studio UI or APIs to specify the SageMaker Model Registry model to be shared and grant access to specific AWS accounts or to everyone in the organization. We will start by using the SageMaker Studio UI and then by using APIs.

article thumbnail

Unlocking generative AI for enterprises: How SnapLogic powers their low-code Agent Creator using Amazon Bedrock

AWS Machine Learning

Agent Creator is a versatile extension to the SnapLogic platform that is compatible with modern databases, APIs, and even legacy mainframe systems, fostering seamless integration across various data environments. Its low-code interface drastically reduces the time needed to develop generative AI applications.

article thumbnail

Schedule Amazon SageMaker notebook jobs and manage multi-step notebook workflows using APIs

AWS Machine Learning

Amazon SageMaker notebook jobs allow data scientists to run their notebooks on demand or on a schedule with a few clicks in SageMaker Studio. With this launch, you can programmatically run notebooks as jobs using APIs provided by Amazon SageMaker Pipelines , the ML workflow orchestration feature of Amazon SageMaker.

APIs 100
article thumbnail

Transforming credit decisions using generative AI with Rich Data Co and AWS

AWS Machine Learning

Our initial approach combined prompt engineering and traditional Retrieval Augmented Generation (RAG). They provide access to external data and APIs or enable specific actions and computation. As a former startup CTO, he enjoys collaborating with founders and engineering leaders to drive growth and innovation on AWS.

article thumbnail

Use AWS PrivateLink to set up private access to Amazon Bedrock

AWS Machine Learning

It allows developers to build and scale generative AI applications using FMs through an API, without managing infrastructure. Customers are building innovative generative AI applications using Amazon Bedrock APIs using their own proprietary data.

APIs 138