Remove APIs Remove Big data Remove Enterprise
article thumbnail

Unlocking generative AI for enterprises: How SnapLogic powers their low-code Agent Creator using Amazon Bedrock

AWS Machine Learning

The landscape of enterprise application development is undergoing a seismic shift with the advent of generative AI. Agent Creator is a versatile extension to the SnapLogic platform that is compatible with modern databases, APIs, and even legacy mainframe systems, fostering seamless integration across various data environments.

article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. A Business or Enterprise Google Workspace account with access to Google Chat.

APIs 123
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

Customers can use the SageMaker Studio UI or APIs to specify the SageMaker Model Registry model to be shared and grant access to specific AWS accounts or to everyone in the organization. We will start by using the SageMaker Studio UI and then by using APIs.

article thumbnail

Generating value from enterprise data: Best practices for Text2SQL and generative AI

AWS Machine Learning

NLP SQL enables business users to analyze data and get answers by typing or speaking questions in natural language, such as the following: “Show total sales for each product last month” “Which products generated more revenue?” In entered the Big Data space in 2013 and continues to explore that area. Nitin Eusebius is a Sr.

article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication

AWS Machine Learning

In this post, we will continue to build on top of the previous solution to demonstrate how to build a private API Gateway via Amazon API Gateway as a proxy interface to generate and access Amazon SageMaker presigned URLs. The user invokes createStudioPresignedUrl API on API Gateway along with a token in the header.

APIs 98
article thumbnail

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

AWS Machine Learning

Solution overview Our solution implements a verified semantic cache using the Amazon Bedrock Knowledge Bases Retrieve API to reduce hallucinations in LLM responses while simultaneously improving latency and reducing costs. The function checks the semantic cache (Amazon Bedrock Knowledge Bases) using the Retrieve API.

article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 3: Multi-account private API access to Studio

AWS Machine Learning

Enterprise customers have multiple lines of businesses (LOBs) and groups and teams within them. These customers need to balance governance, security, and compliance against the need for machine learning (ML) teams to quickly access their data science environments in a secure manner.

APIs 93