Remove APIs Remove Big data Remove Presentation
article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. The following figure illustrates the high-level design of the solution.

APIs 122
article thumbnail

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

AWS Machine Learning

Solution overview Our solution implements a verified semantic cache using the Amazon Bedrock Knowledge Bases Retrieve API to reduce hallucinations in LLM responses while simultaneously improving latency and reducing costs. The function checks the semantic cache (Amazon Bedrock Knowledge Bases) using the Retrieve API.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

Customers can use the SageMaker Studio UI or APIs to specify the SageMaker Model Registry model to be shared and grant access to specific AWS accounts or to everyone in the organization. We will start by using the SageMaker Studio UI and then by using APIs.

article thumbnail

How Formula 1® uses generative AI to accelerate race-day issue resolution

AWS Machine Learning

During these live events, F1 IT engineers must triage critical issues across its services, such as network degradation to one of its APIs. This impacts downstream services that consume data from the API, including products such as F1 TV, which offer live and on-demand coverage of every race as well as real-time telemetry.

APIs 69
article thumbnail

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

AWS Machine Learning

Harnessing the power of big data has become increasingly critical for businesses looking to gain a competitive edge. However, managing the complex infrastructure required for big data workloads has traditionally been a significant challenge, often requiring specialized expertise.

Big data 116
article thumbnail

Building an efficient MLOps platform with OSS tools on Amazon ECS with AWS Fargate

AWS Machine Learning

From our experience, artifact server has some limitations, such as limits on artifact size (because of sending it using REST API). Environment variables : Set environment variables, such as model paths, API keys, and other necessary parameters. The main parts we use are tracking the server and model registry.

APIs 120
article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 1: Foundational infrastructure

AWS Machine Learning

This presents an undesired threat vector for exfiltration and gaining access to customer data when proper access controls are not enforced. Studio supports a few methods for enforcing access controls against presigned URL data exfiltration: Client IP validation using the IAM policy condition aws:sourceIp. About the Authors.

APIs 98