Remove APIs Remove Construction Remove Scripts
article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. Run the script init-script.bash : chmod u+x init-script.bash./init-script.bash

APIs 112
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

Customers can use the SageMaker Studio UI or APIs to specify the SageMaker Model Registry model to be shared and grant access to specific AWS accounts or to everyone in the organization. We will start by using the SageMaker Studio UI and then by using APIs.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

AWS Machine Learning

Amazon Bedrock agents use LLMs to break down tasks, interact dynamically with users, run actions through API calls, and augment knowledge using Amazon Bedrock Knowledge Bases. In this post, we demonstrate how to use Amazon Bedrock Agents with a web search API to integrate dynamic web content in your generative AI application.

APIs 99
article thumbnail

Bring legacy machine learning code into Amazon SageMaker using AWS Step Functions

AWS Machine Learning

The best practice for migration is to refactor these legacy codes using the Amazon SageMaker API or the SageMaker Python SDK. SageMaker runs the legacy script inside a processing container. Step Functions is a serverless workflow service that can control SageMaker APIs directly through the use of the Amazon States Language.

Scripts 130
article thumbnail

Generate training data and cost-effectively train categorical models with Amazon Bedrock

AWS Machine Learning

In the following sections, we provide a detailed explanation on how to construct your first prompt, and then gradually improve it to consistently achieve over 90% accuracy. Later, if they saw the employee making mistakes, they might try to simplify the problem and provide constructive feedback by giving examples of what not to do, and why.

article thumbnail

Create a document lake using large-scale text extraction from documents with Amazon Textract

AWS Machine Learning

The first allows you to run a Python script from any server or instance including a Jupyter notebook; this is the quickest way to get started. The second approach is a turnkey deployment of various infrastructure components using AWS Cloud Development Kit (AWS CDK) constructs. We have packaged this solution in a.ipynb script and.py

Scripts 99
article thumbnail

Enhancing LLM Capabilities with NeMo Guardrails on Amazon SageMaker JumpStart

AWS Machine Learning

Colang is purpose-built for simplicity and flexibility, featuring fewer constructs than typical programming languages, yet offering remarkable versatility. It leverages natural language constructs to describe dialogue interactions, making it intuitive for developers and simple to maintain. define bot express greeting "Hey there!"