Remove APIs Remove Definition Remove Metrics
article thumbnail

Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

AWS Machine Learning

Evaluation algorithm Computes evaluation metrics to model outputs. Different algorithms have different metrics to be specified. It functions as a standalone HTTP server that provides various REST API endpoints for monitoring, recording, and visualizing experiment runs. This allows you to keep track of your ML experiments.

article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

APIs 112
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Orchestrate an intelligent document processing workflow using tools in Amazon Bedrock

AWS Machine Learning

The solution uses the FMs tool use capabilities, accessed through the Amazon Bedrock Converse API. This enables the FMs to not just process text, but to actively engage with various external tools and APIs to perform complex document analysis tasks. For more details on how tool use works, refer to The complete tool use workflow.

APIs 94
article thumbnail

Streamline RAG applications with intelligent metadata filtering using Amazon Bedrock

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

article thumbnail

Generate training data and cost-effectively train categorical models with Amazon Bedrock

AWS Machine Learning

Where discrete outcomes with labeled data exist, standard ML methods such as precision, recall, or other classic ML metrics can be used. These metrics provide high precision but are limited to specific use cases due to limited ground truth data. If the use case doesnt yield discrete outputs, task-specific metrics are more appropriate.

Education 112
article thumbnail

Enable pod-based GPU metrics in Amazon CloudWatch

AWS Machine Learning

In February 2022, Amazon Web Services added support for NVIDIA GPU metrics in Amazon CloudWatch , making it possible to push metrics from the Amazon CloudWatch Agent to Amazon CloudWatch and monitor your code for optimal GPU utilization. Then we explore two architectures. already installed. eks-create.sh 19 private:192.168.128.0/19

Metrics 125
article thumbnail

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

AWS Machine Learning

Amazon Bedrock agents use LLMs to break down tasks, interact dynamically with users, run actions through API calls, and augment knowledge using Amazon Bedrock Knowledge Bases. In this post, we demonstrate how to use Amazon Bedrock Agents with a web search API to integrate dynamic web content in your generative AI application.

APIs 106