Remove APIs Remove Definition Remove Scripts
article thumbnail

Generate customized, compliant application IaC scripts for AWS Landing Zone using Amazon Bedrock

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon with a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

Scripts 129
article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

APIs 111
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Bring legacy machine learning code into Amazon SageMaker using AWS Step Functions

AWS Machine Learning

The best practice for migration is to refactor these legacy codes using the Amazon SageMaker API or the SageMaker Python SDK. SageMaker runs the legacy script inside a processing container. Step Functions is a serverless workflow service that can control SageMaker APIs directly through the use of the Amazon States Language.

Scripts 141
article thumbnail

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

AWS Machine Learning

Amazon Bedrock agents use LLMs to break down tasks, interact dynamically with users, run actions through API calls, and augment knowledge using Amazon Bedrock Knowledge Bases. In this post, we demonstrate how to use Amazon Bedrock Agents with a web search API to integrate dynamic web content in your generative AI application.

APIs 106
article thumbnail

Generate training data and cost-effectively train categorical models with Amazon Bedrock

AWS Machine Learning

Designing the prompt Before starting any scaled use of generative AI, you should have the following in place: A clear definition of the problem you are trying to solve along with the end goal. Refer to Getting started with the API to set up your environment to make Amazon Bedrock requests through the AWS API. client = boto3.client("bedrock-runtime",

article thumbnail

How LotteON built a personalized recommendation system using Amazon SageMaker and MLOps

AWS Machine Learning

Problem definition Traditionally, the recommendation service was mainly provided by identifying the relationship between products and providing products that were highly relevant to the product selected by the customer. Lambda receives the list of recommendations and provides them to the API gateway.

article thumbnail

How Games24x7 transformed their retraining MLOps pipelines with Amazon SageMaker

AWS Machine Learning

The code to invoke the pipeline script is available in the Studio notebooks, and we can change the hyperparameters and input/output when invoking the pipeline. This is quite different from our earlier method where we had all the parameters hard coded within the scripts and all the processes were inextricably linked. cpu-py39-ubuntu20.04-sagemaker",

Scripts 104