Remove APIs Remove Demo Remove Scripts
article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. Run the script init-script.bash : chmod u+x init-script.bash./init-script.bash

APIs 126
article thumbnail

Automate invoice processing with Streamlit and Amazon Bedrock

AWS Machine Learning

Traditional methods relying on manual data entry or custom scripts for each vendor’s format can not only lead to inefficiencies, but can also increase the potential for errors, resulting in financial discrepancies, operational bottlenecks, and backlogs. In this tutorial, we use the API approach.

APIs 108
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 3: Multi-account private API access to Studio

AWS Machine Learning

In the post Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication , we demonstrated how to build a private API to generate Amazon SageMaker Studio presigned URLs that are only accessible by an authenticated end-user within the corporate network from a single account.

APIs 82
article thumbnail

How Druva used Amazon Bedrock to address foundation model complexity when building Dru, Druva’s backup AI copilot

AWS Machine Learning

Dru on the backend decodes log data, deciphers error codes, and invokes API calls to troubleshoot. This approach allowed us to break the problem down into multiple steps: Identify the API route. Generate and invoke private API calls. Having similar names and synonyms in API routes make this retrieval problem more complex.

APIs 111
article thumbnail

Amazon Bedrock Custom Model Import now generally available

AWS Machine Learning

This feature empowers customers to import and use their customized models alongside existing foundation models (FMs) through a single, unified API. Having a unified developer experience when accessing custom models or base models through Amazon Bedrock’s API. Ease of deployment through a fully managed, serverless, service. 2, 3, 3.1,

APIs 139
article thumbnail

Fine-tune and deploy a summarizer model using the Hugging Face Amazon SageMaker containers bringing your own script

AWS Machine Learning

The SageMaker Python SDK provides open-source APIs and containers to train and deploy models on SageMaker, using several different ML and deep learning frameworks. Build your training script for the Hugging Face SageMaker estimator. script to use with Script Mode and pass hyperparameters for training. to(device).

Scripts 98
article thumbnail

Zendesk Agent Scripting App – Version 11

Zingtree

If you’re a Zendesk user in a Contact Center environment, you’ll want to be using our Zendesk Agent Scripting app. Pause and Resume: If a ticket is transferred, the supervisor or new agent is taken to the last place in the script, and can see the history of the previous steps taken. Demo Video.

Scripts 67