Remove APIs Remove Engineering Remove Metrics
article thumbnail

Build a video insights and summarization engine using generative AI with Amazon Bedrock

AWS Machine Learning

This post presents a solution where you can upload a recording of your meeting (a feature available in most modern digital communication services such as Amazon Chime ) to a centralized video insights and summarization engine. All of this data is centralized and can be used to improve metrics in scenarios such as sales or call centers.

article thumbnail

Transitioning off Amazon Lookout for Metrics 

AWS Machine Learning

Amazon Lookout for Metrics is a fully managed service that uses machine learning (ML) to detect anomalies in virtually any time-series business or operational metrics—such as revenue performance, purchase transactions, and customer acquisition and retention rates—with no ML experience required.

Metrics 101
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Build a reverse image search engine with Amazon Titan Multimodal Embeddings in Amazon Bedrock and AWS managed services

AWS Machine Learning

A reverse image search engine enables users to upload an image to find related information instead of using text-based queries. The Amazon Bedrock single API access, regardless of the models you choose, gives you the flexibility to use different FMs and upgrade to the latest model versions with minimal code changes.

article thumbnail

Few-shot prompt engineering and fine-tuning for LLMs in Amazon Bedrock

AWS Machine Learning

Investors and analysts closely watch key metrics like revenue growth, earnings per share, margins, cash flow, and projections to assess performance against peers and industry trends. Draft a comprehensive earnings call script that covers the key financial metrics, business highlights, and future outlook for the given quarter.

article thumbnail

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

AWS Machine Learning

Amazon Bedrock agents use LLMs to break down tasks, interact dynamically with users, run actions through API calls, and augment knowledge using Amazon Bedrock Knowledge Bases. In this post, we demonstrate how to use Amazon Bedrock Agents with a web search API to integrate dynamic web content in your generative AI application.

APIs 108
article thumbnail

Foundational vision models and visual prompt engineering for autonomous driving applications

AWS Machine Learning

Prompt engineering has become an essential skill for anyone working with large language models (LLMs) to generate high-quality and relevant texts. Although text prompt engineering has been widely discussed, visual prompt engineering is an emerging field that requires attention.

article thumbnail

Unleashing the power of generative AI: Verisk’s journey to an Instant Insight Engine for enhanced customer support

AWS Machine Learning

Verisk has embraced this technology and has developed their own Instant Insight Engine, or AI companion, that provides an enhanced self-service capability to their FAST platform. First, they used the Amazon Kendra Retrieve API to get multiple relevant passages and excerpts based on keyword search.