Remove APIs Remove Engineering Remove Scripts
article thumbnail

Few-shot prompt engineering and fine-tuning for LLMs in Amazon Bedrock

AWS Machine Learning

Traditionally, earnings call scripts have followed similar templates, making it a repeatable task to generate them from scratch each time. On the other hand, generative artificial intelligence (AI) models can learn these templates and produce coherent scripts when fed with quarterly financial data.

article thumbnail

Generate customized, compliant application IaC scripts for AWS Landing Zone using Amazon Bedrock

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon with a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

Scripts 127
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Create an end-to-end serverless digital assistant for semantic search with Amazon Bedrock

AWS Machine Learning

Amazon Bedrock is a fully managed service that makes a wide range of foundation models (FMs) available though an API without having to manage any infrastructure. An Amazon OpenSearch Serverless vector engine to store enterprise data as vectors to perform semantic search. The request is sent by the web application to the API.

APIs 141
article thumbnail

Bring legacy machine learning code into Amazon SageMaker using AWS Step Functions

AWS Machine Learning

The best practice for migration is to refactor these legacy codes using the Amazon SageMaker API or the SageMaker Python SDK. We demonstrate how two different personas, a data scientist and an MLOps engineer, can collaborate to lift and shift hundreds of legacy models. SageMaker runs the legacy script inside a processing container.

Scripts 144
article thumbnail

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

AWS Machine Learning

Amazon Bedrock agents use LLMs to break down tasks, interact dynamically with users, run actions through API calls, and augment knowledge using Amazon Bedrock Knowledge Bases. In this post, we demonstrate how to use Amazon Bedrock Agents with a web search API to integrate dynamic web content in your generative AI application.

APIs 105
article thumbnail

Build an image search engine with Amazon Kendra and Amazon Rekognition

AWS Machine Learning

To address the problems associated with complex searches, this post describes in detail how you can achieve a search engine that is capable of searching for complex images by integrating Amazon Kendra and Amazon Rekognition. A Python script is used to aid in the process of uploading the datasets and generating the manifest file.

article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 3: Multi-account private API access to Studio

AWS Machine Learning

In the post Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication , we demonstrated how to build a private API to generate Amazon SageMaker Studio presigned URLs that are only accessible by an authenticated end-user within the corporate network from a single account.

APIs 97