Remove APIs Remove Government Remove Metrics
article thumbnail

Governing the ML lifecycle at scale: Centralized observability with Amazon SageMaker and Amazon CloudWatch

AWS Machine Learning

This post is part of an ongoing series on governing the machine learning (ML) lifecycle at scale. To start from the beginning, refer to Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker. Consolidate metrics across source accounts and build unified dashboards.

article thumbnail

Achieve operational excellence with well-architected generative AI solutions using Amazon Bedrock

AWS Machine Learning

However, scaling up generative AI and making adoption easier for different lines of businesses (LOBs) comes with challenges around making sure data privacy and security, legal, compliance, and operational complexities are governed on an organizational level. In this post, we discuss how to address these challenges holistically.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Improve governance of your machine learning models with Amazon SageMaker

AWS Machine Learning

Overview of model governance. Model governance is a framework that gives systematic visibility into model development, validation, and usage. Model governance is applicable across the end-to-end ML workflow, starting from identifying the ML use case to ongoing monitoring of a deployed model through alerts, reports, and dashboards.

article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

We also dive deeper into access patterns, governance, responsible AI, observability, and common solution designs like Retrieval Augmented Generation. It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. API Gateway is serverless and hence automatically scales with traffic.

article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning

For now, we consider eight key dimensions of responsible AI: Fairness, explainability, privacy and security, safety, controllability, veracity and robustness, governance, and transparency. Regular evaluations allow you to adjust and steer the AI’s behavior based on feedback and performance metrics.

APIs 110
article thumbnail

Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

AWS Machine Learning

Evaluation algorithm Computes evaluation metrics to model outputs. Different algorithms have different metrics to be specified. It functions as a standalone HTTP server that provides various REST API endpoints for monitoring, recording, and visualizing experiment runs. This allows you to keep track of your ML experiments.

article thumbnail

How Veritone uses Amazon Bedrock, Amazon Rekognition, Amazon Transcribe, and information retrieval to update their video search pipeline

AWS Machine Learning

With a decade of enterprise AI experience, Veritone supports the public sector, working with US federal government agencies, state and local government, law enforcement agencies, and legal organizations to automate and simplify evidence management, redaction, person-of-interest tracking, and eDiscovery.

APIs 135