article thumbnail

Enhance customer support with Amazon Bedrock Agents by integrating enterprise data APIs

AWS Machine Learning

In this post, we guide you through integrating Amazon Bedrock Agents with enterprise data APIs to create more personalized and effective customer support experiences. An automotive retailer might use inventory management APIs to track stock levels and catalog APIs for vehicle compatibility and specifications.

APIs 134
article thumbnail

Streamline workflow orchestration of a system of enterprise APIs using chaining with Amazon Bedrock Agents

AWS Machine Learning

Intricate workflows that require dynamic and complex API orchestration can often be complex to manage. In this post, we explore how chaining domain-specific agents using Amazon Bedrock Agents can transform a system of complex API interactions into streamlined, adaptive workflows, empowering your business to operate with agility and precision.

APIs 136
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Redacting PII data at The Very Group with Amazon Comprehend

AWS Machine Learning

This is guest post by Andy Whittle, Principal Platform Engineer – Application & Reliability Frameworks at The Very Group. At The Very Group , which operates digital retailer Very, security is a top priority in handling data for millions of customers. The adoption of Logstash was initially done seamlessly. text(logData).build();

article thumbnail

GraphStorm 0.3: Scalable, multi-task learning on graphs with user-friendly APIs

AWS Machine Learning

adds new APIs to customize GraphStorm pipelines: you now only need 12 lines of code to implement a custom node classification training loop. Based on customer feedback for the experimental APIs we released in GraphStorm 0.2, introduces refactored graph ML pipeline APIs. Specifically, GraphStorm 0.3 In addition, GraphStorm 0.3

APIs 126
article thumbnail

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

AWS Machine Learning

Amazon Bedrock agents use LLMs to break down tasks, interact dynamically with users, run actions through API calls, and augment knowledge using Amazon Bedrock Knowledge Bases. The ReAct approach enables agents to generate reasoning traces and actions while seamlessly integrating with company systems through action groups.

APIs 108
article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. The following figure illustrates the high-level design of the solution.

APIs 131
article thumbnail

Onboard users to Amazon SageMaker Studio with Active Directory group-specific IAM roles

AWS Machine Learning

With SSO mode, you set up an SSO user and group in IAM Identity Center and then grant access to either the SSO group or user from the Studio console. For instance, administrators may want to set up IAM permissions for a Studio SSO user based on their Active Directory (AD) group membership.

APIs 97