Remove APIs Remove Management Remove Metrics
article thumbnail

Amazon Bedrock launches Session Management APIs for generative AI applications (Preview)

AWS Machine Learning

Amazon Bedrock announces the preview launch of Session Management APIs, a new capability that enables developers to simplify state and context management for generative AI applications built with popular open source frameworks such as LangGraph and LlamaIndex.

APIs 121
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Track LLM model evaluation using Amazon SageMaker managed MLflow and FMEval

AWS Machine Learning

Ultimately, this systematic approach to managing models, prompts, and datasets contributes to the development of more reliable and transparent generative AI applications. MLflow is an open source platform for managing the end-to-end ML lifecycle, including experimentation, reproducibility, and deployment.

article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. It contains services used to onboard, manage, and operate the environment, for example, to onboard and off-board tenants, users, and models, assign quotas to different tenants, and authentication and authorization microservices.

article thumbnail

Build generative AI applications quickly with Amazon Bedrock IDE in Amazon SageMaker Unified Studio

AWS Machine Learning

Building generative AI applications presents significant challenges for organizations: they require specialized ML expertise, complex infrastructure management, and careful orchestration of multiple services. You can obtain the SageMaker Unified Studio URL for your domains by accessing the AWS Management Console for Amazon DataZone.

APIs 107
article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

APIs 112
article thumbnail

Build a reverse image search engine with Amazon Titan Multimodal Embeddings in Amazon Bedrock and AWS managed services

AWS Machine Learning

The Amazon Bedrock single API access, regardless of the models you choose, gives you the flexibility to use different FMs and upgrade to the latest model versions with minimal code changes. Amazon Titan FMs provide customers with a breadth of high-performing image, multimodal, and text model choices, through a fully managed API.