Remove APIs Remove Metrics Remove Scripts
article thumbnail

Benchmarking Amazon Nova and GPT-4o models with FloTorch

AWS Machine Learning

How do Amazon Nova Micro and Amazon Nova Lite perform against GPT-4o mini in these same metrics? Amazon Bedrock APIs make it straightforward to use Amazon Titan Text Embeddings V2 for embedding data. Vector database FloTorch selected Amazon OpenSearch Service as a vector database for its high-performance metrics.

article thumbnail

Considerations for addressing the core dimensions of responsible AI for Amazon Bedrock applications

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

APIs 109
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

AWS Machine Learning

Amazon Bedrock agents use LLMs to break down tasks, interact dynamically with users, run actions through API calls, and augment knowledge using Amazon Bedrock Knowledge Bases. In this post, we demonstrate how to use Amazon Bedrock Agents with a web search API to integrate dynamic web content in your generative AI application.

APIs 105
article thumbnail

How to decide between Amazon Rekognition image and video API for video moderation

AWS Machine Learning

Amazon Rekognition has two sets of APIs that help you moderate images or videos to keep digital communities safe and engaged. Some customers have asked if they could use this approach to moderate videos by sampling image frames and sending them to the Amazon Rekognition image moderation API.

APIs 85
article thumbnail

Few-shot prompt engineering and fine-tuning for LLMs in Amazon Bedrock

AWS Machine Learning

Investors and analysts closely watch key metrics like revenue growth, earnings per share, margins, cash flow, and projections to assess performance against peers and industry trends. Traditionally, earnings call scripts have followed similar templates, making it a repeatable task to generate them from scratch each time.

article thumbnail

From RAG to fabric: Lessons learned from building real-world RAGs at GenAIIC – Part 1

AWS Machine Learning

The retrieve_and_generate API does both the retrieval and a call to an FM (Amazon Titan or Anthropic’s Claude family of models on Amazon Bedrock ), for a fully managed solution. Mean Reciprocal Rank (MRR) – This metric considers the ranking of the retrieved documents. More advanced models such as Anthropic’s Claude Sonnet 3.5

article thumbnail

Generate training data and cost-effectively train categorical models with Amazon Bedrock

AWS Machine Learning

Where discrete outcomes with labeled data exist, standard ML methods such as precision, recall, or other classic ML metrics can be used. These metrics provide high precision but are limited to specific use cases due to limited ground truth data. If the use case doesnt yield discrete outputs, task-specific metrics are more appropriate.