Remove APIs Remove Metrics Remove Scripts
article thumbnail

How to decide between Amazon Rekognition image and video API for video moderation

AWS Machine Learning

Amazon Rekognition has two sets of APIs that help you moderate images or videos to keep digital communities safe and engaged. Some customers have asked if they could use this approach to moderate videos by sampling image frames and sending them to the Amazon Rekognition image moderation API.

APIs 95
article thumbnail

Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents

AWS Machine Learning

Amazon Bedrock agents use LLMs to break down tasks, interact dynamically with users, run actions through API calls, and augment knowledge using Amazon Bedrock Knowledge Bases. In this post, we demonstrate how to use Amazon Bedrock Agents with a web search API to integrate dynamic web content in your generative AI application.

APIs 105
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Build an air quality anomaly detector using Amazon Lookout for Metrics

AWS Machine Learning

This post shows you how to use an integrated solution with Amazon Lookout for Metrics and Amazon Kinesis Data Firehose to break these barriers by quickly and easily ingesting streaming data, and subsequently detecting anomalies in the key performance indicators of your interest. You don’t need ML experience to use Lookout for Metrics.

Metrics 97
article thumbnail

Few-shot prompt engineering and fine-tuning for LLMs in Amazon Bedrock

AWS Machine Learning

Investors and analysts closely watch key metrics like revenue growth, earnings per share, margins, cash flow, and projections to assess performance against peers and industry trends. Traditionally, earnings call scripts have followed similar templates, making it a repeatable task to generate them from scratch each time.

article thumbnail

Create a document lake using large-scale text extraction from documents with Amazon Textract

AWS Machine Learning

The first allows you to run a Python script from any server or instance including a Jupyter notebook; this is the quickest way to get started. In the following sections, we first describe the script solution, followed by the AWS CDK construct solution. The following diagram illustrates the sequence of events within the script.

Scripts 122
article thumbnail

Accelerated PyTorch inference with torch.compile on AWS Graviton processors

AWS Machine Learning

Image 2: Hugging Face NLP model inference performance improvement with torch.compile on AWS Graviton3-based c7g instance using Hugging Face example scripts. This section shows how to run inference in eager and torch.compile modes using torch Python wheels and benchmarking scripts from Hugging Face and TorchBench repos.

Benchmark 119
article thumbnail

How Games24x7 transformed their retraining MLOps pipelines with Amazon SageMaker

AWS Machine Learning

All the training and evaluation metrics were inspected manually from Amazon Simple Storage Service (Amazon S3). The code to invoke the pipeline script is available in the Studio notebooks, and we can change the hyperparameters and input/output when invoking the pipeline.

Scripts 107