article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning

In the first part of the series, we showed how AI administrators can build a generative AI software as a service (SaaS) gateway to provide access to foundation models (FMs) on Amazon Bedrock to different lines of business (LOBs). It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker.

article thumbnail

Build an internal SaaS service with cost and usage tracking for foundation models on Amazon Bedrock

AWS Machine Learning

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon via a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI.

SaaS 143
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Build a video insights and summarization engine using generative AI with Amazon Bedrock

AWS Machine Learning

To enable the video insights solution, the architecture uses a combination of AWS services, including the following: Amazon API Gateway is a fully managed service that makes it straightforward for developers to create, publish, maintain, monitor, and secure APIs at scale.

article thumbnail

Secure a generative AI assistant with OWASP Top 10 mitigation

AWS Machine Learning

These steps might involve both the use of an LLM and external data sources and APIs. Agent plugin controller This component is responsible for the API integration to external data sources and APIs. The LLM agent is an orchestrator of a set of steps that might be necessary to complete the desired request.

APIs 109
article thumbnail

Enhance deployment guardrails with inference component rolling updates for Amazon SageMaker AI inference

AWS Machine Learning

For more information about the SageMaker AI API, refer to the SageMaker AI API Reference. 8B-Instruct to DeepSeek-R1-Distill-Llama-8B, but the new model version has different API expectations. In this use case, you have configured a CloudWatch alarm to monitor for 4xx errors, which would indicate API compatibility issues.

APIs 88
article thumbnail

Integrate SaaS platforms with Amazon SageMaker to enable ML-powered applications

AWS Machine Learning

A number of AWS independent software vendor (ISV) partners have already built integrations for users of their software as a service (SaaS) platforms to utilize SageMaker and its various features, including training, deployment, and the model registry.

SaaS 97
article thumbnail

Q&A recap: crash course in Customer Success and SaaS metrics with Dave Kellogg

ChurnZero

With so many SaaS metrics floating around, and even more opinions on when and how to use them, it can be hard to know if you’re measuring what really matters. Leading SaaS expert, Dave Kellogg, and ChurnZero CEO, You Mon Tsang, sat down to answer all the questions you want to know about SaaS metrics like ARR, NRR, GRR, LTV, and CAC (i.e.,

SaaS 98