article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

The custom Google Chat app, configured for HTTP integration, sends an HTTP request to an API Gateway endpoint. Before processing the request, a Lambda authorizer function associated with the API Gateway authenticates the incoming message. Run the script init-script.bash : chmod u+x init-script.bash./init-script.bash

APIs 125
article thumbnail

Benchmarking Amazon Nova and GPT-4o models with FloTorch

AWS Machine Learning

Amazon Bedrock APIs make it straightforward to use Amazon Titan Text Embeddings V2 for embedding data. The implementation used the universal gateway provided by the FloTorch enterprise version to enable consistent API calls using the same function and to track token count and latency metrics uniformly. get("message", {}).get("content")

Benchmark 114
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Transcribe, translate, and summarize live streams in your browser with AWS AI and generative AI services

AWS Machine Learning

The solution also uses Amazon Cognito user pools and identity pools for managing authentication and authorization of users, Amazon API Gateway REST APIs, AWS Lambda functions, and an Amazon Simple Storage Service (Amazon S3) bucket. To launch the solution in a different Region, change the aws_region parameter accordingly.

APIs 134
article thumbnail

Secure a generative AI assistant with OWASP Top 10 mitigation

AWS Machine Learning

These steps might involve both the use of an LLM and external data sources and APIs. Agent plugin controller This component is responsible for the API integration to external data sources and APIs. The LLM agent is an orchestrator of a set of steps that might be necessary to complete the desired request.

APIs 119
article thumbnail

Build a Multi-Agent System with LangGraph and Mistral on AWS

AWS Machine Learning

By using the power of LLMs and combining them with specialized tools and APIs, agents can tackle complex, multistep tasks that were previously beyond the reach of traditional AI systems. Whenever local database information is unavailable, it triggers an online search using the Tavily API. Its used by the weather_agent() function.

APIs 130
article thumbnail

Enterprise-grade natural language to SQL generation using LLMs: Balancing accuracy, latency, and scale

AWS Machine Learning

Additionally, if temporary tables or views are used for the data domain, a SQL script is required that, when executed, creates the desired temporary data structures needs to be defined. Depending on the use case, this can be a static or dynamically generated script. A domain-specific user prompt.

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

Customers can use the SageMaker Studio UI or APIs to specify the SageMaker Model Registry model to be shared and grant access to specific AWS accounts or to everyone in the organization. We will start by using the SageMaker Studio UI and then by using APIs. To get started, set-up a name for your experiment.