Remove APIs Remove Scripts Remove Workshop
article thumbnail

Secure a generative AI assistant with OWASP Top 10 mitigation

AWS Machine Learning

These steps might involve both the use of an LLM and external data sources and APIs. Agent plugin controller This component is responsible for the API integration to external data sources and APIs. The LLM agent is an orchestrator of a set of steps that might be necessary to complete the desired request.

APIs 116
article thumbnail

Create an end-to-end serverless digital assistant for semantic search with Amazon Bedrock

AWS Machine Learning

Amazon Bedrock is a fully managed service that makes a wide range of foundation models (FMs) available though an API without having to manage any infrastructure. Amazon API Gateway and AWS Lambda to create an API with an authentication layer and integrate with Amazon Bedrock. An API created with Amazon API Gateway.

APIs 142
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Transition your Amazon Forecast usage to Amazon SageMaker Canvas

AWS Machine Learning

You can also either use the SageMaker Canvas UI, which provides a visual interface for building and deploying models without needing to write any code or have any ML expertise, or use its automated machine learning (AutoML) APIs for programmatic interactions. Python script – Use a Python script to merge the datasets.

APIs 118
article thumbnail

Automate the insurance claim lifecycle using Agents and Knowledge Bases for Amazon Bedrock

AWS Machine Learning

At the forefront of this evolution sits Amazon Bedrock , a fully managed service that makes high-performing foundation models (FMs) from Amazon and other leading AI companies available through an API. System integration – Agents make API calls to integrated company systems to run specific actions.

APIs 140
article thumbnail

Unlock the potential of generative AI in industrial operations

AWS Machine Learning

However, complex NLQs, such as time series data processing, multi-level aggregation, and pivot or joint table operations, may yield inconsistent Python script accuracy with a zero-shot prompt. The user can use the Amazon Recognition DetectText API to extract text data from these images. setup.sh. (a a challenge-level question).

article thumbnail

Amazon SageMaker Domain in VPC only mode to support SageMaker Studio with auto shutdown Lifecycle Configuration and SageMaker Canvas with Terraform

AWS Machine Learning

You must also associate a security group for your VPC with these endpoints to allow all inbound traffic from port 443: SageMaker API: com.amazonaws.region.sagemaker.api. This is required to communicate with the SageMaker API. SageMaker runtime: com.amazonaws.region.sagemaker.runtime.

Scripts 123
article thumbnail

Modernizing data science lifecycle management with AWS and Wipro

AWS Machine Learning

Continuous integration and continuous delivery (CI/CD) pipeline – Using the customer’s GitHub repository enabled code versioning and automated scripts to launch pipeline deployment whenever new versions of the code are committed. Wipro has used the input filter and join functionality of SageMaker batch transformation API.