Remove Benchmark Remove Engineering Remove Metrics
article thumbnail

Benchmarking Amazon Nova and GPT-4o models with FloTorch

AWS Machine Learning

Using its enterprise software, FloTorch conducted an extensive comparison between Amazon Nova models and OpenAIs GPT-4o models with the Comprehensive Retrieval Augmented Generation (CRAG) benchmark dataset. How do Amazon Nova Micro and Amazon Nova Lite perform against GPT-4o mini in these same metrics? Each provisioned node was r7g.4xlarge,

article thumbnail

20 Call Center Pros Share the Most Undervalued Call Center Metrics and How To Better Leverage Them

Callminer

From essentials like average handle time to broader metrics such as call center service levels , there are dozens of metrics that call center leaders and QA teams must stay on top of, and they all provide visibility into some aspect of performance. Kaye Chapman @kayejchapman. First contact resolution (FCR) measures might be…”.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

LLM-as-a-judge on Amazon Bedrock Model Evaluation

AWS Machine Learning

This approach allows organizations to assess their AI models effectiveness using pre-defined metrics, making sure that the technology aligns with their specific needs and objectives. Curated judge models : Amazon Bedrock provides pre-selected, high-quality evaluation models with optimized prompt engineering for accurate assessments.

Metrics 94
article thumbnail

Customer Satisfaction Score (CSAT) Industry Benchmarks

GetFeedback

A new list of benchmarks is published each year by ACSI, with minor quarterly updates. . Below is the complete list of the newest CSAT benchmarks. Internet Search Engines and Information: 79%. Click here to download the current industry benchmarks. According to the ACSI, the current overall U.S. Airlines: 73%. Banks: 81%.

Benchmark 117
article thumbnail

Elevate customer experience by using the Amazon Q Business custom plugin for New Relic AI

AWS Machine Learning

The challenge: Resolving application problems before they impact customers New Relic’s 2024 Observability Forecast highlights three key operational challenges: Tool and context switching – Engineers use multiple monitoring tools, support desks, and documentation systems. New Relic AI conducts a comprehensive analysis of the checkout service.

article thumbnail

Optimizing AI responsiveness: A practical guide to Amazon Bedrock latency-optimized inference

AWS Machine Learning

To effectively optimize AI applications for responsiveness, we need to understand the key metrics that define latency and how they impact user experience. These metrics differ between streaming and nonstreaming modes and understanding them is crucial for building responsive AI applications.

article thumbnail

LLM continuous self-instruct fine-tuning framework powered by a compound AI system on Amazon SageMaker

AWS Machine Learning

Compound AI system and the DSPy framework With the rise of generative AI, scientists and engineers face a much more complex scenario to develop and maintain AI solutions, compared to classic predictive AI. DSPy supports iteratively optimizing all prompts involved against defined metrics for the end-to-end compound AI solution.