Remove Benchmark Remove Knowledge Base Remove Metrics
article thumbnail

Benchmarking Amazon Nova and GPT-4o models with FloTorch

AWS Machine Learning

Using its enterprise software, FloTorch conducted an extensive comparison between Amazon Nova models and OpenAIs GPT-4o models with the Comprehensive Retrieval Augmented Generation (CRAG) benchmark dataset. How do Amazon Nova Micro and Amazon Nova Lite perform against GPT-4o mini in these same metrics?

Benchmark 107
article thumbnail

Guest Blog: How to Benchmark Your Customer Support Metrics — A Quick Guide

ShepHyken

This week we feature an article by Kaavya Karthikeyan who writes about customer support metrics that you should be tracking. – Shep Hyken. One of the best ways by which you can ensure your organization is consistently performing is by benchmarking customer support metrics. The industry benchmark for FRR is 7 hours.

Benchmark 189
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

20 Call Center Pros Share the Most Undervalued Call Center Metrics and How To Better Leverage Them

Callminer

From essentials like average handle time to broader metrics such as call center service levels , there are dozens of metrics that call center leaders and QA teams must stay on top of, and they all provide visibility into some aspect of performance. Kaye Chapman @kayejchapman. First contact resolution (FCR) measures might be…”.

article thumbnail

Evaluate RAG responses with Amazon Bedrock, LlamaIndex and RAGAS

AWS Machine Learning

Current RAG pipelines frequently employ similarity-based metrics such as ROUGE , BLEU , and BERTScore to assess the quality of the generated responses, which is essential for refining and enhancing the models capabilities. More sophisticated metrics are needed to evaluate factual alignment and accuracy.

Metrics 114
article thumbnail

LLM-as-a-judge on Amazon Bedrock Model Evaluation

AWS Machine Learning

This approach allows organizations to assess their AI models effectiveness using pre-defined metrics, making sure that the technology aligns with their specific needs and objectives. The introduction of an LLM-as-a-judge framework represents a significant step forward in simplifying and streamlining the model evaluation process.

Metrics 96
article thumbnail

10 Key Metrics and KPI’s for Contact Centre Performance

Call Design

Understanding how to make a profit on the double bottom line (DBL) involves employing a broad range of KPIs and key metrics to ensure a contact centre meets every need that a business may have in supporting their customers. of the 380 contact centre professionals they asked thought customer satisfaction was one of the most important metrics.

Metrics 148
article thumbnail

LLM continuous self-instruct fine-tuning framework powered by a compound AI system on Amazon SageMaker

AWS Machine Learning

Besides the efficiency in system design, the compound AI system also enables you to optimize complex generative AI systems, using a comprehensive evaluation module based on multiple metrics, benchmarking data, and even judgements from other LLMs. The DSPy lifecycle is presented in the following diagram in seven steps.