article thumbnail

Fine-tune and deploy a summarizer model using the Hugging Face Amazon SageMaker containers bringing your own script

AWS Machine Learning

Build your training script for the Hugging Face SageMaker estimator. script to use with Script Mode and pass hyperparameters for training. Thanks to our custom inference script hosted in a SageMaker endpoint, we can generate several summaries for this review with different text generation parameters. If we use an ml.g4dn.16xlarge

Scripts 98
article thumbnail

Fast and cost-effective LLaMA 2 fine-tuning with AWS Trainium

AWS Machine Learning

We review the fine-tuning scripts provided by the AWS Neuron SDK (using NeMo Megatron-LM), the various configurations we used, and the throughput results we saw. For example, to use the RedPajama dataset, use the following command: wget [link] python nemo/scripts/nlp_language_modeling/preprocess_data_for_megatron.py

Scripts 125
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

How Twilio used Amazon SageMaker MLOps pipelines with PrestoDB to enable frequent model retraining and optimized batch transform

AWS Machine Learning

Batch transform The batch transform pipeline consists of the following steps: The pipeline implements a data preparation step that retrieves data from a PrestoDB instance (using a data preprocessing script ) and stores the batch data in Amazon Simple Storage Service (Amazon S3).

Scripts 124
article thumbnail

Super charge your LLMs with RAG at scale using AWS Glue for Apache Spark

AWS Machine Learning

These embeddings are used to determine semantic similarity between queries and text from the data sources Solution overview In this solution, we use LangChain integrated with AWS Glue for Apache Spark and Amazon OpenSearch Serverless. About the Authors Noritaka Sekiyama is a Principal Big Data Architect on the AWS Glue team.

article thumbnail

Automate Amazon SageMaker Pipelines DAG creation

AWS Machine Learning

You can then iterate on preprocessing, training, and evaluation scripts, as well as configuration choices. framework/createmodel/ – This directory contains a Python script that creates a SageMaker model object based on model artifacts from a SageMaker Pipelines training step. script is used by pipeline_service.py The model_unit.py

Scripts 119
article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning

Run the script init-script.bash : chmod u+x init-script.bash./init-script.bash init-script.bash This script prompts you for the following: The Amazon Bedrock knowledge base ID to associate with your Google Chat app (refer to the prerequisites section). The script deploys the AWS CDK project in your account.

APIs 126
article thumbnail

Contact Center Trends 2024: Our Predictions

Fonolo

We live in an era of big data, AI, and automation, and the trends that matter in CX this year begin with the abilities – and pain points – ushered in by this technology. For example, big data makes things like hyper-personalized customer service possible, but it also puts enormous stress on data security.