Remove Engineering Remove Metrics Remove Scripts
article thumbnail

Few-shot prompt engineering and fine-tuning for LLMs in Amazon Bedrock

AWS Machine Learning

Investors and analysts closely watch key metrics like revenue growth, earnings per share, margins, cash flow, and projections to assess performance against peers and industry trends. Traditionally, earnings call scripts have followed similar templates, making it a repeatable task to generate them from scratch each time.

article thumbnail

Customized model monitoring for near real-time batch inference with Amazon SageMaker

AWS Machine Learning

Examples include financial systems processing transaction data streams, recommendation engines processing user activity data, and computer vision models processing video frames. A preprocessor script is a capability of SageMaker Model Monitor to preprocess SageMaker endpoint data capture before creating metrics for model quality.

Scripts 100
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Automate Amazon SageMaker Pipelines DAG creation

AWS Machine Learning

This enables data scientists to quickly build and iterate on ML models, and empowers ML engineers to run through continuous integration and continuous delivery (CI/CD) ML pipelines faster, decreasing time to production for models. You can then iterate on preprocessing, training, and evaluation scripts, as well as configuration choices.

Scripts 111
article thumbnail

The Key Role of Call Center Dynamic Agent Scripting in Customer Experience

NobelBiz

Scripts are an essential component of every contact center. The correct amount of data and accurate information delivery can yield impressive scripting capabilities. To provide a better customer experience (CX), dynamic agent scripting is required. Table of Contents show What is call center Dynamic Agent Scripting?

Scripts 52
article thumbnail

Build an image search engine with Amazon Kendra and Amazon Rekognition

AWS Machine Learning

To address the problems associated with complex searches, this post describes in detail how you can achieve a search engine that is capable of searching for complex images by integrating Amazon Kendra and Amazon Rekognition. A Python script is used to aid in the process of uploading the datasets and generating the manifest file.

article thumbnail

How Twilio used Amazon SageMaker MLOps pipelines with PrestoDB to enable frequent model retraining and optimized batch transform

AWS Machine Learning

PrestoDB is an open source SQL query engine that is designed for fast analytic queries against data of any size from multiple sources. We use a preprocessing script to connect and query data from a PrestoDB instance using the user-specified SQL query in the config file. For more information on processing jobs, see Process data.

Scripts 117
article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning

The DS uses SageMaker Training jobs to generate metrics captured by , selects a candidate model, and registers the model version inside the shared model group in their local model registry. Optionally, this model group can also be shared with their test and production accounts if local account access to model versions is needed.