Remove Government Remove industry solution Remove Metrics
article thumbnail

Driving advanced analytics outcomes at scale using Amazon SageMaker powered PwC’s Machine Learning Ops Accelerator

AWS Machine Learning

Data and model management provide a central capability that governs ML artifacts throughout their lifecycle. Integrations with CI/CD workflows and data versioning promote MLOps best practices such as governance and monitoring for iterative development and data versioning. It enables auditability, traceability, and compliance.

Analytics 129
article thumbnail

Modernizing data science lifecycle management with AWS and Wipro

AWS Machine Learning

MLOps – Model monitoring and ongoing governance wasn’t tightly integrated and automated with the ML models. Reusability – Without reusable MLOps frameworks, each model must be developed and governed separately, which adds to the overall effort and delays model operationalization.